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The viscoelasticity of a series of monodisperse molten polystyrenes was investigated over a wide molecular 
weight range (9200 to 756 300). The plateau modulus was determined as the value of G' at the minimum 
of tan 6 in the rubbery zone, because this point defines a gel-like viscoelastic behaviour. A possible 
dependence of the entanglement density on chain length was explored, as a recent model predicts such an 
effect. The experimental indication is that the onset of the entanglement network occurs rather abruptly 
around M e and that the entanglement density is constant for M > M e. 
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I N T R O D U C T I O N  

Despite extensive experimental and theoretical work in 
the past decades, polymer melt viscoelasticity is still a 
challenging topic. Even the physical nature of the stress 
originating from a strain (or from a strain rate) applied 
to a polymeric liquid is a matter of controversy. In the 
generally accepted framework the stress arises mainly 
from the intramolecular force due to the orientation of 
the bond vectors of the chain (entropic origin) 1. 
However, in a recent series of papers 2-5 many viscoelastic 
properties, both below and above T,, were modelled in 
terms of intermolecular (enthalpic) dielectric interactions. 
Among other things, the entanglement concept is often 
discussed and revised in the literature, as it is one of the 
most typical features of chain molecules and a key factor 
controlling the melt rheology 1'6 and the solid-state 
deformation mechanisms 7'8. 

It is frequently useful to think of entanglements as 
defined contact points between chains acting like pseudo- 
crosslinks; however, it is more correct to represent 
entanglements by a rather 'delocalized' picture 6. In the 
reptation theory 1, for instance, an entanglement spacing 
is not specified; however, the tube diameter proves to be 
an equivalent parameter. 

The molecular weight between entanglements, Me, is 
usually determined from the rubbery plateau modulus 
G ° through an equation derived from the theory of rubber 
elasticity : 

Me _ p R T  (1) 
co 

where p is the density of the polymer, R the gas constant 
and T the absolute temperature. 

In the literature there are many models which describe 
the entanglement network of polymer melts 5'9-17, and 
sometimes they are quite different. Relevant for this paper 
is the model recently proposed by Kavassalis and 
Noolandi 15-17, in which the entanglement spacing is 
considered as a quantity representing an averaged 
topological parameter. They imagined a test chain 

divided into a number of blobs, each containing N e 
segments, where the number of segments between 
entanglements is initially an arbitrary parameter. They 
calculated the number of tail segments in the blob and 
the number of segments threading the blob without a 
tail, and considered only the latter as effective for 
topological constraining. Within this framework, Me was 
found to be independent of chain length and determined 
by intrinsic properties only for quite high molecular 
weights; conversely, as the molecular weight decreased 
(being still above the entanglement spacing), a marked 
increase of Me was predicted. 

In the present work the melt viscoelasticity of a series 
of monodisperse polystyrenes was investigated, to seek 
a possible dependence of G ° on molecular weight. A 
comparison was made between different methods of G ° 
assessment in order to determine it carefully over a wide 
molecular weight range. 

EXPERIMENTAL 

Materials 

A series of narrow-distribution polystyrenes (PS), 
normally used as calibration standards for g.p.c, instru- 
ments, was investigated. Their molecular data, as attested 
by the supplier (Polymer Laboratories), are reported in 
Table 1. It can be seen that the molecular weights span 
almost two decades. The smallest chain length investi- 
gated (sample PS-9) is well below the entanglement 
spacing of PS, which is approximately in the molecular 
weight range ~ 17000-21 0006'7'18-2°. Sample PS-8 has 
a molecular weight similar to M e and sample PS-7 has 
a molecular weight similar to or slightly lower than Me, 
where Me is the critical molecular weight for the 
transition from qo oc M to qo oc M 3,4, where t/o is the 
zero shear viscosity. 

Rheological characterization 

The materials were compression-moulded to form discs 
subsequently used for the melt viscoelasticity character- 
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Sample Mw M . / M .  

G' at tan 5 
minimum 
(105 Pa) 

6 
10 

PS-1 756 300 1.04 2.06 
PS-2 326 600 1.03 2.09 
PS-3 222 200 1.03 2.06 
PS-4 94 300 1.04 2.06 
PS-5 66 400 1.03 1.95 
PS-6 50 800 1.03 1.99 
PS-7 30 200 1.03 2.03 
PS-8 18 900 1.05 2.35 
PS-9 9200 1.03 3.80 

ization: this was carried out with a Rheometrics mech- 
anical spectrometer RMS-800. Sinusoidal strain was 
imposed, with a small-oscillation amplitude to stay 
within the linear viscoelasticity limits of the materials. 
Frequency sweeps at different temperatures were per- 
formed. For each material both the rubbery plateau and 
the terminal region were explored. As the molecular 
weight affects the relaxation time and the glass transition 
temperature too, different temperature ranges were 
investigated: for PS-9 the range was 120-150°C, whereas 
for PS-1 it was 150-260°C. 

For all the polystyrenes the viscoelastic quantities of 
interest for this work (G', G", tan 6) were superimposed 
at the reference temperature of 150°C by means of a 
suitable software (Rhecurve, supplied by Rheometrics). 

RESULTS 

Plateau modulus from &tegration of  the loss modulus 
As long as equation (1) is used to estimate entangle- 

ment spacing, the most crucial point is the determination 
of the plateau modulus. One method is the integration 
of the loss modulus G" in the terminal zone 6'9'z°-z3. 
However, as pointed out by Ferry 6, some guesswork is 
needed to separate the contribution of the terminal zone 
from the rest of the relaxation spectrum. A practical 
method of doing this is to integrate the G" vs co dispersion 
from - ~  to the frequency comax at which G" has a 
maximum and to double the result; thus the plateau 
modulus is given by  9'10-23 

f t°max d(ln co) (2) 
G ° = (4/~z). -oo G" 

The determination of the plateau modulus by integration 
of the loss modulus terminal zone is sometimes question- 
able. For instance, Masuda et al. 22 found with PMMA 
samples that M, increased with molecular weight, a trend 
which appears unrealistic and very difficult to account 
for. Furthermore, if the molecular weight is not high 
enough or if there is polydispersity, the maximum in the 
G" vs In co dispersion becomes rather indefinite. Figures 1 
and 2 show the G" master curves split into two groups 
for clarity. The G" maximum is weak for sample PS-3 
with molecular weight 222000 and becomes a vague 
shoulder at lower molecular weights. This is consistent 
with the work of Onogi et al. 2°, in which equation (2) 
was applied only to PS samples with a molecular weight 
above 215 000. 

Even when the maximum is well defined, a closer 

inspection of the experimental data shows some degree 
of uncertainty: Figure 3 shows the master curve of G" 
for the PS-1 material; the arrows mark a possible range 
for the upper integration limit of equation (2). Conse- 
quently the plateau modulus estimation varies from 135 
to 173 kPa. Thus the error which can be introduced in 
the calculation is quite high; in this case also, the mean 
value appears to be underestimated. For lower molecular 
weights the uncertainty in defining the upper integration 
limit is even more severe. 

Plateau modulus from G' at the tan 6 minimum 
If entanglements are thought of as localized points, it 

is well known 14 that they have to be considered, at least 
instantaneously, as fixed points like crosslinks, in order 
to apply the kinetic theory of rubber elasticity. Also, in 
a more 'deloealized' picture of entanglements, Graessley 
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Table 1 Molecular parameters and network moduli of the mono- 
disperse polystyrenes used in this study 
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Figure 1 Double-logarithmic plots of G" vs co at 150°C for medium- 
high molecular weight monodisperse polystyrenes. Labels refer to 
sample numbers in Table 1 
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Figure 2 Double-logarithmic plots of G" vs co at 150°C for medium- 
low molecular weight monodisperse polystyrenes. Labels refer to 
sample numbers in Table 1 
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Figure 3 G" vs In m at 150°C for PS-1. The arrows mark a possible 
range for the upper integration limit of equation (2) 
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Figure 4 G' and tan 5 master curves at 150°C for PS-5. The tan 5 
minimum in the rubbery plateau region is marked 

and Edwards 13 pointed out that G ° is an instantaneous 
modulus. Therefore it is conceivable that the plateau 
modulus can be characterized by a single point in the 
modulus- t ime (modulus-frequency) curve. 

Recently the following criterion for the determination 
of G ° has been used : 

G ° = ( G t ) t a n 6 ~ m i n i m u  m ( 3 )  

where the plateau modulus is taken to coincide with the 
storage modulus at the minimum of tan 6 in the rubbery 
plateau region of the material. This method has been 
applied to homopolymers 9, random copolymers 18 and 
miscible polymer blends 25-27. 

In Figure 4 the G' and tan 5 vs ~o master curves at 
150°C of PS-5 (M w = 66400) are plotted. It can be 
noticed that the minimum of tan 6 in the rubbery plateau 
region for this material is well defined, whereas its G" 
terminal zone appears only as a weak shoulder (Figure 2). 

If one restricts the analysis of the viscoelastic functions 
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very locally around the frequency at which the tan 6 
minimum occurs, it is interesting that a viscoelastic model 
of a gel-like situation can be adopted. Winter et al. 28'29 
modelled the viscoelastic functions both for chemical and 
for physical gelation processes. At the gel point the 
following scaling law is observed: 

G' ( co ) ~z G" ( co ) ~z uJ" (4) 

and thus tan 6 has a constant value tan 6c as a function 
of the frequency. Assuming that the power law of G' and 
G" holds over the entire frequency axis, and applying 
Kramers-Kronig  relationships, the tan 6c value is given 
by 

tan 5~ = t an (n  2 )  (5) 

As a minimum in tan 6 means a zero first derivative, it 
can be assumed in the present case as a first-order 
approximation that tan 6 is constant and thus a gel-like 
situation holds. Of course this point holds only locally 
on the frequency axis. 

The density of experimental points was increased, for 
some materials, just around the tan 5 minimum. Figure 5 
shows the results for PS-2 at 160°C: the rate range is 
between 9 and 10.8 rad s-  1 and tan 5 is nearly constant 
with a minimum of 0.2318 and a maximum of 0.2322. 
The G' and G" points scale with the frequency as follows : 

G r oC 6 0 0 ' 1 3 5 - - -  0 . 0 0 1  

G" oc 600"137 ± 0.003 

whereas t an6  c estimated from equation (5) is 0.217, 
compared with the experimental value of ~.0.232. 

The same approach is given in Figure 6 for PS-7 at 
130°C: the rate here ranges from 9.4 to 14.2 rad s-1 and 
tan 5 from 1.384 to 1.396. The fit in this case is 

G r oc 0 9 0 . 4 9 7  ± 0 . 0 0 3  

G" oc (D 0"504± 0.004 

and tan 5 c is 1 from equation (5), compared with the 
experimental value of ~ 1.39. 
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Figure 5 G' and G" vs ~o around the tan 6 minimum at 160'~C for 
PS-2. The symbols are experimental data, the lines are fitted to equation 
(4) 
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Figure 6 G' and G" vs ~o around the tan 6 min imum at 130°C for 
PS-7. The symbols are experimental data, the lines are fitted to equation 
(4) 

Thus experimentally the gel equation (4) is satisfied, 
as is reasonably expected (see the Appendix). Less 
agreement is observed for equation (5); this could stem 
from the fact that Winter's model assumes the power-law 
behaviour (equation (4)) over the entire frequency 
spectrum, while in the present case this occurs only locally 
around the frequency of the tan 6 minimum. 

Of course, the comparison between the melt network 
and the physical gelation process should be considered 
just as an analogy and not as a strict similarity. For 
example, it is not obvious to depict the transition in 
frequency through the tan 6 minimum as a transition 
from a pre-gel situation to a post-gel one. However, the 
fact the scaling law equation (4) is satisfied seems to 
reinforce the idea that the tan 6 minimum point defines 
a network (gel-like) structure. 

DISCUSSION 

Consider first the case of chain lengths above Me. 
Assuming the tan 6 minimum criterion, it is evident from 
the experimental results that the entanglement density is 
a quantity which acquires its typical value quite abruptly 
above Me. It is interesting at this point to make a 
comparison with the topological model of Kavassalis and 
Noolandi 15-17, as it predicts the entanglement density 
to be sensitive to chain length. They found the following 
equation : 

N + I  = ( ~ ) . N 1 / 2 . ( 1 - N e )  (6) 

where ~ + 1 is a universal constant (average value about 
9.1 ) called the coordination parameter, and N and N e 
are the number of skeletal bonds of the chain and between 
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Figure 7 Double-logarithmic plots of G' vs ~o at 150°C for mono-  
disperse polystyrenes. Labels refer to sample numbers  in Table 1 

Plateau modulus and chain length 
The typical dispersion curves of G' and tan 6 vs 

frequency are reported in Figures 7 and 8 respectively. 
It can be seen that a tan 6 minimum exists for all the 
molecular weights investigated, even when they are 
around or below the entanglement spacing. In Table 1 
the network moduli are reported for each material. The 
experimental accuracy of the values obtained is in the 
region of 5%. 

When the molecular weight is above Me, the plateau 
modulus is constant for all the materials, with a value 
close to 200 kPa, which is generally accepted, as the 
experimentally determined values range from ~ 170 to 
about 220 k P a  18 -2° ' 3 ° ' 31 .  

A typical M e of about 18 000 (depending slightly on the 
temperature and density values selected) is deduced from 
equation (1) with a plateau modulus of 200 kPa. 

For the sample PS-8 (with molecular weight quite close 
to the entanglement spacing) a slightly higher G ° is 
observed, while for PS-9 (molecular weight well below 
the entanglement spacing) G ° is about twice the value 
measured for the M > M e polymers. 
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Figure 8 Double-logarithmic plots of tan& vs 09 at 150°C for 
monodisperse polystyrenes. Labels refer to sample numbers  in Table I 
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Figure 9 Normalized plateau modulus as a function of molecular 
weight for polystyrene as estimated from the Kavassalis-Noolandi 
model (equation (6)) (~ = 1.2,/V + l = 9.1) 

entanglements respectively. The constant ~, is a dimen- 
sionless parameter containing the material characteristics : 

pC~213 
~0 - ( 7 )  

~ m  

where Coo is the characteristic ratio, p the density, 1 the 
mean skeletal bond length and /~m the monomer mass 
per skeletal bond. It is evident from equation (6) that 
Nc is independent of N only in the limit N --* oo. 

Combining equation (6) with equation (1) leads to 
the calculation of the plateau modulus as a function of 
the molecular weight. The case of polystyrene is shown 
in Figure 9, where the plateau modulus has been divided 
by the asymptotic limit that it reaches for very long 
chains. A significant reduction in the plateau modulus 
(by a factor of about 0.9) is reached when the molecular 
weight is ~ 240 000. This is in clear contrast to the present 
experimental findings based on the tan 6 minimum 
criterion. However, it is interesting to observe that the 
Kavassalis-Noolandi model predicts an appreciable 
drop in the plateau modulus in the molecular weight 
range 200 000-300 000, where the G" integration criterion 
becomes rather indefinite (Figures 1 and 2). This 
qualitative trend is not unexpected, as both the Kavassalis- 
Noolandi topological model and the terminal zone 
relaxations depend on the whole chain length. 

Thus if the entanglement network is seen as giving rise 
to an instantaneous network modulus, then the entangle- 
ment spacing is independent of chain length and reflects 
only some intrinsic material parameters such as the 
characteristic ratio and monomer density. If, conversely, 
entanglements are thought to be associated with the 
relaxations in the terminal zone, the whole chain 
topology and thus the chain length become more 
important. However, this last point of view appears to 
be difficult to assess experimentally. Furthermore some 
experimental facts seem in favour of the idea of the 
entanglement onset as a rather abrupt one with no, or 
quite small, dependence on the molecular weight. 

For  example, crazing of glassy polymers is known to 
be related to entanglementsT'8.3z: as the crazing stress 
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of polystyrene is reported 33 to be appreciable and 
constant for molecular weights down to about 70000, 
this should indicate a chain length effect certainly much 
weaker than that deduced from equation (6). Another 
indication comes from the very interesting experiments 
of Kotliar et al. 34 on the rhelogy of polymers that are at 
least partly in a disentangled state. Measuring the 
viscosity and the plateau modulus of disentangled chains, 
they observed no significant changes with respect to a 
normally entangled melt. To account for these results, 
they concluded that it is necessary to assume that 
intramolecular segments can make a significant contri- 
bution as flow obstacles. This could be another indication 
that large-scale features of the chain and the topology of 
the surrounding chains should not play a very crucial 
role compared with the effects determined by the local 
chain structure. 

For  M < Me the tan 5 minimum breaks down as a 
criterion to define G ° . This is reasonable, because by 
definition an entangled network should not exist below 
M c. However, it is possible to define a network modulus 
even in this case. 

It could be suggested that the network modulus for 
these materials is due to the macromolecular, Lennard- 
Jones-like interactions as described by Porter 2-s. Accord- 
ing to this author the modulus due to macromolecular 
interactions scales with 1/N (N being the polymerization 
index ) and, below the critical molecular weight, it is larger 
than the rubbery plateau modulus. Of course this 
suggestion is highly qualitative, and further experimental 
and theoretical work is needed for a precise assessment 
of the network-like behaviour in the range M < Me. 
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APPENDIX 

A minimum in tan 6 as a function of the frequency is 
also a minimum in log(tan h), so that 

and then 

d[log(G"/G')] 
de) 

= 0  (A1) 

d(log G") d(log G')  
- (A2) 

de) do) 

If one assumes that, at least locally, the storage and loss 
moduli can be represented as a power law of the 
frequency, then 

G' = K~ .co" (A3) 

G" = K2.o)" (A4) 

where K1, K2, m and n are constants. Taking the 
logarithms of equations (A3) and (A4) leads to 

log(G') = log(K1) + n.log co (A5) 

log(G") = log(K2) + re.log co (A6) 

Combining equations (A2) with (A5) and (A6) yields 
immediately n = m, which is the expected experimental 
result. 
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